Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance.

TitleCerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance.
Publication TypeJournal Article
Year of Publication2004
AuthorsMorton SM, Dordevic GS, Bastian AJ
JournalExperimental brain research
Volume156
Issue2
Pagination149-63
Date Published2004 May
Abstract

It has been suggested that the cerebellum is an important contributor to CNS prediction and control of intersegmental dynamics during voluntary multijoint reaching movements. Leg movements subserve different behavioral goals, e.g., locomotion versus voluntary stepping, which may or may not be under similar dynamic control. The objective was to determine whether cerebellar leg hypermetria (excessive foot elevation) during obstacle avoidance in locomotion and voluntary stepping could be attributed to a particular deficit in appropriately controlling intersegmental dynamics. We compared the performance of eight individuals with cerebellar damage to eight healthy controls as they walked or voluntarily stepped in place over a small obstacle. Joint kinematics and dynamics were calculated during swing phase for both movement contexts. The kinematic analysis showed that hypermetria occurred during both walking and stepping and was associated with excessive knee flexion. When present, the amplitude of hypermetria was greater during stepping compared to walking. During stepping, subjects with cerebellar damage produced excessive knee flexor muscle torques and consequently overcompensated for interaction and gravitational torques normally used to decelerate the limb. During walking, the torque pattern was very similar to that of control subjects walking over a taller obstacle, and therefore might be a voluntary compensatory strategy to avoid tripping. Our results show that the extent of kinematic and dynamic abnormalities associated with cerebellar leg hypermetria is context-specific, with more fundamental abnormalities of leg dynamics being apparent during stepping as opposed to walking.

Alternate JournalExp Brain Res