Not all reading disabilities are dyslexia: distinct neurobiology of specific comprehension deficits.

TitleNot all reading disabilities are dyslexia: distinct neurobiology of specific comprehension deficits.
Publication TypeJournal Article
Year of Publication2013
AuthorsCutting LE, Clements-Stephens A, Pugh KR, Burns S, Cao A, Pekar JJ, Davis N, Rimrodt SL
JournalBrain connectivity
Volume3
Issue2
Pagination199-211
Date Published2013
Abstract

Although an extensive literature exists on the neurobiological correlates of dyslexia (DYS), to date, no studies have examined the neurobiological profile of those who exhibit poor reading comprehension despite intact word-level abilities (specific reading comprehension deficits [S-RCD]). Here we investigated the word-level abilities of S-RCD as compared to typically developing readers (TD) and those with DYS by examining the blood oxygenation-level dependent response to words varying on frequency. Understanding whether S-RCD process words in the same manner as TD, or show alternate pathways to achieve normal word-reading abilities, may provide insights into the origin of this disorder. Results showed that as compared to TD, DYS showed abnormal covariance during word processing with right-hemisphere homologs of the left-hemisphere reading network in conjunction with left occipitotemporal underactivation. In contrast, S-RCD showed an intact neurobiological response to word stimuli in occipitotemporal regions (associated with fast and efficient word processing); however, inferior frontal gyrus (IFG) abnormalities were observed. Specifically, TD showed a higher-percent signal change within right IFG for low-versus-high frequency words as compared to both S-RCD and DYS. Using psychophysiological interaction analyses, a coupling-by-reading group interaction was found in right IFG for DYS, as indicated by a widespread greater covariance between right IFG and right occipitotemporal cortex/visual word-form areas, as well as bilateral medial frontal gyrus, as compared to TD. For S-RCD, the context-dependent functional interaction anomaly was most prominently seen in left IFG, which covaried to a greater extent with hippocampal, parahippocampal, and prefrontal areas than for TD for low- as compared to high-frequency words. Given the greater lexical access demands of low frequency as compared to high-frequency words, these results may suggest specific weaknesses in accessing lexical-semantic representations during word recognition. These novel findings provide foundational insights into the nature of S-RCD, and set the stage for future investigations of this common, but understudied, reading disorder.

DOI10.1155/2013/951319
Alternate JournalBrain Connect